

APUNTES DE FORMULACIÓN Y NOMENCLATURA DE QUÍMICA INORGÁNICA BACHILLERATO

1. <u>ELEMENTOS, SÍMBOLOS Y NÚMEROS DE OXIDACIÓN MÁS FRECUENTES EN LA FORMULACIÓN DE QUÍMICA INORGÁNICA</u>

Para poder formular y nombrar los compuestos de química inorgánica es necesario aprenderse el nombre de los elementos, los símbolos y los números de oxidación más frecuentes de la siguiente tabla.

NO METALES						
Elementos	Símbolos	Nº oxidación		Elementos	Símbolos	Nº oxidación
Hidrógeno	Н	-1 1		Nitrógeno	N	-3 1,2,3,4,5
Fluor	F	-1		Fósforo	P	-3 1, 3, 5
Cloro	Cl			Arsénico	As	-3 3,5
Bromo	Br	-1 1, 3, 5, 7		Antimonio	Sb	-3 3,5
Yodo	I			Boro	В	-3 3
Oxígeno	0	-2		Bismuto	Bi	-3 3, 5
Azufre	S			Carbono	С	-4 2, 4
Selenio	Se	-2 2, 4, 6		Silicio	Si	-4 4
Teluro	Te					

			METALES				
Elementos	Símbolos	Nº oxidación		Elementos	Símbolos	Nº oxidación	
Litio	Li			Cobre	Cu	1, 2	
Sodio	Na			Mercurio	Hg	1, 2	
Potasio	K			Aluminio	Al	3	
Rubidio	Rb	1		Oro	Au	1, 3	
Cesio	Cs			Hierro	Fe		
Francio	Fr				Cobalto	Co	2, 3
Plata	Ag			Níquel	Ni		
Berilio	Be			Estaño	Sn		
Magnesio	Mg			Plomo	Pb	2, 4	
Calcio	Ca			Platino	Pt		
Estroncio	Sr	2		Cromo	Cr	2, 3, 4, 6	
Bario	Ba	Δ		Manganeso	Mn	2, 3, 4, 6, 7	
Radio	Ra						
Cinc	Zn						
Cadmio	Cd						

Cuando nos referimos a la valencia de un elemento corresponde al valor absoluto de su nº de oxidación.

2. REGLAS BÁSICAS EN LA FORMULACIÓN

- A Las reglas de nomenclatura y formulación que vamos a seguir son las que se establecen en la Ponencia de Química de Andalucía en 2011 que se basan en las recomendaciones de la IUPAC de 2005. La nomenclatura a utilizar para los compuestos binarios es la llamada de composición o estequiométrica con dos variantes: utilizando prefijos multiplicadores y expresando el número de oxidación con números romanos. Para los compuestos ternarios (oxoácidos y oxosales) se utilizará la nomenclatura tradicional.
- ♣ Las fórmulas de los compuestos se dividen en dos partes: en la izquierda se sitúa la parte positiva (catión) y en la derecha la parte negativa (anión). Al nombrarlo se hace en orden inverso.
- En una fórmula, el subíndice que se escribe en la parte inferior derecha de un símbolo representa el número de átomos de ese elemento químico en ese compuesto.

- ♣ La suma de los números de oxidación de todos los átomos de los elementos que intervienen en un compuesto debe ser cero.
- ♣ Si se puede, se simplifican los subíndices (hay excepciones, como los peróxidos), teniendo en cuenta que deben ser números enteros y que el subíndice 1 no se escribe.
- ♣ En la nomenclatura con prefijos multiplicadores: se anteponen prefijos a los nombres de los componentes que hacen referencia a los subíndices (mono-, di- tri-, tetra-, penta-, hexa- y hepta).

Si el subíndice del anión (escrito en la derecha de la fórmula) es 1 nunca se escribe el prefijo mono-. Si el subíndice del catión (escrito en la izquierda de la fórmula) es 1 no se pone el prefijo mono- si el número de oxidación del catión es único, pero se puede poder opcionalmente el prefijo mono- si el catión tiene varios números de oxidación.

Ejemplos de nombres para el compuesto XO:

Monóxido de monoequis (mal nombrado)

Óxido de equis (si X tiene un único número de oxidación)

Óxido de equis o Monóxido de equis (si X tiene varios números de oxidación)

- Los diferentes prefijos en óxidos son: monóxido, dióxido, trióxido, tetraóxido, pentaóxido, hexaóxido y heptaóxido.
- * En la nomenclatura con números romanos: se pone entre paréntesis y en números romanos el número de oxidación que está utilizando el elemento de la izquierda en esa fórmula. Si dicho elemento tuviera un solo número de oxidación no se indica entre paréntesis.

♣ En la nomenclatura tradicional, para los oxoácidos, se indica el número de oxidación del elemento central añadiendo prefijos y sufijos al nombre del elemento.

		P)	00 111 0 10 - 0			
Prefijo	Sufijo	Según los números de oxidación que tenga:				
Fielijo	Sunjo	Con 4	Con 3	Con 2	Con 1	
hipo-	-oso	El menor	El menor			
	-oso	El 2º menor	El 2º menor	El menor		
	-ico	El 3º menor	El mayor	El mayor	El único	
per-	-ico	El mayor				

♣ En la nomenclatura tradicional, para nombrar los aniones, se indica el número de oxidación del elemento de la izquierda según el ácido del que procediera:

Si el sufijo en el ácido era	El sufijo en el anión será		
-OSO —	-ito		
-ico	-ato		

3. ESQUEMA DE LA NOMENCLATURA Y FORMULACIÓN QUE VAMOS A VER

COMPUESTOS BINARIOS

CON OXÍGENO (ÓXIDOS Y PERÓXIDOS)

CON HIDRÓGENO (HIDRUROS Y HALUROS)

SIN OXÍGENO NI HIDRÓGENO (SALES BINARIAS)

COMPUESTOS TERNARIOS

HIDRÓXIDOS

ÁCIDOS OXOÁCIDOS

IONES: CATIONES Y ANIONES

SALES TERNARIAS (OXISALES)

SALES CUATERNARIAS

ESPECIES MONOATÓMICAS

4. CÓMO SE FORMULAN Y SE NOMBRAN LOS COMPUESTOS

4.1 COMPUESTOS BINARIOS

4.1.1 <u>CON OXÍGENO</u>

4.1.1.1 ÓXIDOS

GRUPO DE COMPUESTOS	Óxidos
TIPO DE COMBINACIÓN	Combinación del oxígeno (O) con otro elemento químico (X).
N ^{os} de oxidación	El O tiene -2 y X tiene x (siempre positivo).
FÓRMULAS	X_2O_x (si x es divisible entre 2, se simplificarán los subíndices de la fórmula)
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X CONOCIENDO LA FÓRMULA	$(n^{\circ} X) \cdot x + (n^{\circ} O) \cdot (-2) = 0$
NOMENCLATURAS DE COMPOSICIÓN O ESTEQUIOMÉTRICA	Nomenclatura con prefijos multiplicadores: prefijo n°O+óxido de+prefijo n°X, si hay más de un átomo+nombre de X
ESTEQUIAMETRICA	Nomenclatura expresando el nº de oxidación con nºs romanos: Óxido de+ nombre de X+(valencia en nºs romanos, si hay más de una).
EJEMPLOS	N ₂ O ₅ – Pentaóxido de dinitrógeno – Óxido de nitrógeno(V) Na ₂ O – Óxido de disodio – Óxido de sodio

4.1.1.2 PERÓXIDOS

GRUPO DE COMPUESTOS	Peróxidos
TIPO DE COMBINACIÓN	Combinación del grupo peróxido (O_2^{2-}) con un elemento metálico (X) .
N ^{os} de oxidación	(O_2^2) : La carga de los dos átomos de oxígeno es de -2, "es como si" cada átomo de oxígeno tuviese un número de oxidación de -1. El O parece tener -1 y X tiene x (siempre positiva).
FÓRMULAS	$X_2O_{2,x}$ (si x es divisible entre 2, se simplificarán los subíndices de la fórmula. No se simplifica si queda un subíndice inferior a 2 en el O).
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X CONOCIENDO LA FÓRMULA	$(n^{\circ} X) \cdot x + (n^{\circ} O) \cdot (-1) = 0$
NOMENCLATURAS DE COMPOSICIÓN O ESTEQUIOMÉTRICA	Nomenclatura con prefijos multiplicadores: prefijo n°O+óxido de+prefijo n°X, si hay más de un átomo+ nombre de X Nomenclatura expresando el nº de oxidación con nºs romanos: Peróxido de+ nombre de X+(valencia en nºs romanos, si hay más de una).
EJEMPLOS	CaO ₂ - Dióxido de calcio -Peróxido de calcio Hg ₂ O ₂ - Dióxido de dimercurio -Peróxido de mercurio(I)

4.1.2 <u>CON HIDRÓGENO</u>

GRUPO DE COMPUESTOS	Con hidrógeno (hidruros y haluros)				
TIPO DE COMBINACIÓN	Combinación del hidrógeno (H) con otro elemento químico (X).				
N ^{os} de oxidación	H (+1 con no metales y -1 con metales) y X (x negativa si es no metal y x positiva si es metal).				
FÓRMULAS	XH _x (cuando X es metal) y H _x X (cuando X es no metal)				
NOMENCLATURAS DE COMPOSICIÓN O ESTEQUIOMÉTRICA	Nomenclatura con prefijos multiplicadores: XH _x :prefijo n°H+hidruro de+ nombre de X H _x X: nombre de X con la terminación -uro + de + prefijo n°H + hidrógeno Nomenclatura expresando el nº de oxidación con nºs romanos: XH _x :Hidruro de+ nombre de X+(valencia en nºs romanos, si hay más de una). H _x X: nombre de X con la terminación -uro + de hidrógeno				
EJEMPLOS	FeH ₂ - Dihidruro de hierro -Hidruro de hierro (II) H ₂ S - Sulfuro de dihidrógeno -Sulfuro de hidrógeno				
NOMBRES TRADICIONALES DE ALGUNOS HIDRUROS					
7LOUNOS TIIDROROS	1120(ag) —acido summuneo				

4.1.3 <u>COMPUESTOS BINARIOS SIN OXÍGENO NI HIDRÓGENO (SALES BINARIAS)</u>

GRUPO DE COMPUESTOS	Compuestos binarios sin oxígeno ni hidrógeno (sales binarias)
TIPO DE COMBINACIÓN	Combinación de un elemento M con otro elemento X
N ^{os} de oxidación	M : m (n° de oxidación positivo) X : x (n° de oxidación negativo)
FÓRMULAS	M_xX_m (los subíndices m y x se simplificarán en la fórmula, cuando sea posible).
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X CONOCIENDO LA FÓRMULA	$(n^{\circ} X) \cdot x \text{ (negativa)} + (n^{\circ} M) \cdot m \text{ (positiva)} = 0$
NOMENCLATURAS DE COMPOSICIÓN O	Nomenclatura con prefijos multiplicadores: prefijo n°X+ nombre de X con la terminación –uro + de + prefijo n°M si hay más de uno + nombre de M
ESTEQUIOMÉTRICA	Nomenclatura expresando el nº de oxidación con nºs romanos: nombre de X con la terminación -uro + de+ nombre de M(m en nºs romanos, si M tiene más de un nº de oxidación).
EJEMPLOS	NaCl - Cloruro de sodio - Cloruro de sodio
EJEMPLOS	Ni ₂ Se ₃ - Triselenuro de diníquel -Selenuro de níquel(III)

4.2 COMPUESTOS TERNARIOS

4.2.1 <u>HIDRÓXIDOS</u>

GRUPO DE COMPUESTOS	Hidróxidos			
TIPO DE COMBINACIÓN	Combinación del grupo hidroxilo (OH) con un elemento metálico (M).			
N ^{os} de oxidación	OH (-1) y M (m,positivo).			
FÓRMULAS	$M(OH)_m$			
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X CONOCIENDO LA FÓRMULA	$(n^{\circ} X) \cdot x \text{ (negativa)} + (n^{\circ} M) \cdot m \text{ (positiva)} = 0$			
NOMENCLATURAS DE COMPOSICIÓN O ESTEQUIOMÉTRICA	Nomenclatura con prefijos multiplicadores: prefijo n°OH+ hidróxido de+ nombre de M Nomenclatura expresando el nº de oxidación con nºs romanos: Hidróxido de + nombre de M(m en nºs romanos, si hay más de una).			
EJEMPLOS	Co(OH) ₂ - Dihidróxido de cobalto -Hidróxido de cobalto(II) NaOH - Hidróxido de sodio -Hidróxido de sodio			

4.2.2 <u>ÁCIDOS OXOÁCIDOS</u>

4.2.2.1. OXOÁCIDOS MONOHIDRATADOS (METAÁCIDOS)

GRUPO DE COMPUESTOS	Oxoácidos (ácidos ternarios)					
TIPO DE COMBINACIÓN	Un oxoácido monohidratado es una combinación de hidrógeno, H, (con número de oxidación +1), un no metal, X, (con número de oxidación +x) y oxígeno, O, (con número de oxidación -2).					
FÓRMULAS	La fórmula del ácido con una molécula de	agua:	ene de la unión O _x + H ₂ O			orrespondiente
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X	,		es se simplificar $x + (n^{\circ}O) \cdot (-2)$		la, si es posible)
NONELLOLAGURA	Se indica el número de oxidación del elemento X añadiendo prefijos y sufijos al nombre del elemento. Prefijo Sufijo Sufijo Control Co					
NOMENCLATURA TRADICIONAL	Ácido X Ácido X Ácido per- X	-080 -080 -ico -ico	Con 4 El menor El 2º menor El 3º menor El mayor	Con 3 El menor El 2º menor El mayor	Con 2 El menor El mayor	Con 1 El único
EJEMPLO DE NOMENCLATURA	Para determinar el nombre de un ácido, conociendo la fórmula, se plantea la siguiente ecuación: Ejemplo: $\mathbf{H_2SO_4}$ 2 · 1 + 1 · x + 4 · (-2) = 0 ; 2 + x - 8 = 0 ; x - 6 = 0 ; x = +6 El azufre tiene tres números de oxidación positivos (+2, +4 y +6), en este caso utiliza el mayor de los tres, por lo que siguiendo las indicaciones de la tabla se nombraría ácido sulfúrico.					

EJEMPLO DE FORMULACIÓN	Para saber la fórmula de un ácido se determina el número de oxidación de X a partir del prefijo y el sufijo que nos indique el nombre. Después se formula el óxido correspondiente y se le adiciona una molécula de H ₂ O. Si es posible se simplifican los subíndices. Ejemplo: Ácido cloroso El Cl tiene cuatro números de oxidación posibles (+1, +3, +5 y +7), el sufijo -oso indica que utiliza el segundo número de oxidación, es decir, +3. Cl ₂ O ₃ + H ₂ O = H ₂ Cl ₂ O ₄ = HClO ₂
CASOS ESPECIALES	Nitrógeno (N): Forma oxoácidos con los números de oxidación +1 (hiponitroso), +3 (nitroso) y +5 (nítrico) Cromo (Cr): Forma oxoácidos con los números de oxidación +4 (cromoso) y +6 (crómico). Manganeso (Mn): Forma oxoácidos con los números de oxidación +4 (manganoso), +6 (mangánico) y +7 (permangánico).

4.2.2.2. OXOÁCIDOS POLIHIDRATADOS (ORTOÁCIDOS)

GRUPO DE COMPUESTOS	Oxoácidos (ácidos ternarios)			
TIPO DE COMBINACIÓN	Un oxoácido polihidratado es una combinación de hidrógeno, H, (con número de oxidación +1), un no metal, X, (con número de oxidación +x) y oxígeno, O, (con número de oxidación -2). Se les reconoce porque siempre tienen 3 o más átomos de H en su molécula.			
FÓRMULAS	La fórmula del ortoácido proviene de la unión de una molécula del óxi correspondiente con dos de agua (para los no metales de grupo par: C, Si, S, Se, Te con tres de agua (para los no metales de grupo impar: B, N, P, As, Sb, F, Cl, Br, I): Óxido de no metal (grupo impar) + 3 H ₂ O Ortoácido Óxido de no metal (grupo par) + 2 H ₂ O Ortoácido			
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X	$(n^{\circ} H) \cdot 1 + (n^{\circ} X) \cdot x + (n^{\circ} O) \cdot (-2) = 0$			
NOMENCLATURA TRADICIONAL	Igual que en apartado anterior			
EJEMPLO DE NOMENCLATURA	Nombrar H₃PO₄ 1° Se identifica que es ortoácido porque tiene tres átomos de H. 2° Se calcula el número de oxidación del fósforo 3 · 1 + 1 · x + 4 · (-2) = 0 ; 3 + · x - 8 = 0 ; x - 5 = 0 ; x = +5 3° Se identifica el prefijo y el sufijo que llevaría el P en este caso. Como el F tiene tres números de oxidación positivos (+1, +3 y +5), en este caso utiliz la mayor de las tres que tiene, con lo que según la tabla de prefijos y sufijo para la nomenclatura tradicional, no llevaría prefijo y el sufijo sería –ico. 4° El nombre sería ácido ortofosfórico o ácido fosfórico .			
EJEMPLO DE FORMULACIÓN	Formular ácido ortoarsenioso o ácido arsenioso 1º El As tiene tres números de oxidación (+1, +3 y +5), la terminación –oso corresponde a +3. 2º Se formula el óxido de arsénico (III) y se suman tres moléculas de H ₂ O. Después se simplifica. As ₂ O ₃ + 3 H ₂ O → H ₆ As ₂ O ₆ → H ₃ AsO ₃			

	Excepciones:
	Los ortoácidos de B, P, As, Sb y Si son más estables que los oxoácidos
EVCEDCIONEC	monohidratados de dichos elementos, por eso se les nombra sin usar el prefijo orto
EXCEPCIONES	(se considera un error nombrar el prefijo orto en estos casos).
	A los oxoácidos monohidratados de B, P, As, Sb y Si * se les nombra como
	ácidos meta-

^{*} Regla nemotécnica: Si Bailo Por Asia Serébailarín

RESUMEN DE LOS METAÁCIDOS Y LOS ORTOÁCIDOS

TIPO DE ÁCIDO	Metaácidos	Ortoácidos	Ortoácidos
GRUPOS AFECTADOS	Para cualquier grupo	Grupos pares: C, Si, S, Se, Te	Grupos impares: B, N, P, As, Sb, F, Cl, Br, I
FORMACIÓN DEL ÁCIDO	Óxido + 1 H ₂ O	Óxido + 2 H ₂ O	Óxido + 3 H ₂ O
PREFIJO	En general, no se nombra el prefijo meta-	En general, sí se indica el prefijo orto-	En general, sí se indica el prefijo orto-
EJEMPLOS	SO ₃ + 1 H ₂ O = H ₂ SO ₄ Ácido sulfúrico (en lugar de ácido metasulfúrico)	$CO_2 + 2 H_2O = H_4CO_4$ Ácido ortocarbónico	Cl ₂ O ₃ + 3 H ₂ O =H ₆ Cl ₂ O ₆ = H ₃ ClO ₃ Ácido ortocloroso
EXCEPCIONES	Para el Si, B, P, As y Sb el prefijo meta- sí se nombra.	Para el Si el prefijo orto- no se nombra.	Para el B, P, As y Sb el prefijo orto- no se nombra.
EJEMPLOS DE LAS EXCEPCIONES	SiO ₂ + 1 H ₂ O = H ₂ SiO ₃ Ácido metasilícico (en lugar de ácido silícico) P ₂ O ₅ + 1 H ₂ O =H ₂ P ₂ O ₆ = =HPO ₃ Ácido metafosfórico (en lugar de ácido fosfórico)	SiO ₂ + 2 H ₂ O =H ₄ SiO ₄ Ácido silícico (en lugar de ácido ortosilícico)	P ₂ O ₅ + 3 H ₂ O =H ₆ P ₂ O ₈ = =H ₃ PO ₄ Ácido fosfórico (en lugar de ácido ortofosfórico)

4.2.2.3. POLIÁCIDOS

GRUPO DE COMPUESTOS	Oxoácidos (ácidos ternarios)	
TIPO DE COMBINACIÓN	Un poliácido es una combinación de hidrógeno, H, (con número de oxidación +1), un no metal, X, (con número de oxidación +x) y oxígeno, O, (con número de oxidación -2). Se les reconoce porque siempre tienen 2 o más átomos de X en su molécula.	
FÓRMULAS	La fórmula del poliácido proviene de la unión de 2 o más moléculas del áci correspondiente quitándole una molécula de agua menos que el grado polimerización del ácido: $2 \text{ H}_2\text{SO}_4 - 1 \text{ H}_2\text{O} = \text{H}_4\text{S}_2\text{O}_8 - 1 \text{ H}_2\text{O} \rightarrow \textbf{H}_2\textbf{S}_2\textbf{O}_7$ $3 \text{ H}_3\text{PO}_4 - 2 \text{ H}_2\text{O} = \text{H}_9\text{P}_3\text{O}_{12} - \text{H}_4\text{O}_2 \rightarrow \textbf{H}_5\textbf{P}_3\textbf{O}_{10}$	
DETERMINACIÓN DEL Nº DE OXIDACIÓN DE X CONOCIENDO LA FÓRMULA	$(n^{\circ} H) \cdot 1 + (n^{\circ} X) \cdot x + (n^{\circ} O) \cdot (-2) = 0$	
EJEMPLO DE NOMENCLATURA	Nombrar $\mathbf{H}_5\mathbf{P}_3\mathbf{O}_{10}$ 1° Se identifica que es poliácido porque tiene tres átomos de P. 2° Se calcula el número de oxidación del fósforo $5 \cdot 1 + 3 \cdot x + 10 \cdot (-2) = 0 \; ; \; 5 + 3 \cdot x - 20 = 0 \; ; \; 3 \cdot x - 15 = 0 \; ; \; x = +5$ 3° Se identifica el prefijo y el sufijo que llevaría el P en este caso. Como el P	

	tiene tres números de oxidación positivos (+1, +3 y +5), en este caso utiliza la mayor de las tres que tiene, con lo que según la tabla de prefijos y sufijos para la nomenclatura tradicional, no llevaría prefijo y el sufijo sería –ico. 4º El nombre sería ácido ortotrifosfórico o ácido trifosfórico .
EJEMPLO DE FORMULACIÓN	Formular ácido disulfúrico 1° El S tiene tres números de oxidación (+2, +4 y +6), la terminación –ico corresponde a +6. 2° Se formula el óxido de azufre (VI) y se suma una molécula de H ₂ O para obtener el ácido sulfúrico: SO ₃ + H ₂ O → H ₂ SO ₄ 3° A 2 moléculas del ácido sulfúrico se le quita 1 molécula de agua. 2 H ₂ SO ₄ - 1 H ₂ O = H ₄ S ₂ O ₈ - 1 H ₂ O → H ₂ S ₂ O ₇
EXCEPCIONES	Excepciones: Los ortoácidos de B, P, As, Sb y Si son más estables que los oxoácidos monohidratados de dichos elementos, por eso se les puede nombrar sin usar el prefijo orto. A los oxoácidos monohidratados de B, P, As, Sb y Si se les nombra como ácidos meta-

4.3. NOMENCLATURA DE LOS IONES

Algunas sustancias pueden fragmentar su molécula neutra originando dos especies iónicas de signos opuestos, catión (+) y anión (-), cuyas cargas suman cero. A este proceso se le denomina disociación electrolítica.

<u>Disociación de ácidos</u>: Los ácidos se disocian liberando todos o parte de sus hidrógenos como H⁺. El resto de la molécula se convierte en un anión con carga negativa del mismo valor que el número de hidrógenos liberados.

<u>Disociación de hidróxidos</u>: Los hidróxidos se disocian liberando aniones OH⁻ y cationes metálicos con carga positiva del mismo valor que el número de oxidación del metal.

<u>Disociación de sales</u>: Las sales se disocian liberando cationes metálicos con carga positiva del mismo valor que el número de oxidación del metal y aniones con carga negativa del valor adecuado para anular la carga positiva de los cationes liberados.

4.3.1 CATIONES

Los cationes corresponden a átomos de metal con carga positiva. Se nombran con la palabra catión seguida del nombre del metal y entre paréntesis se indica la valencia en números romanos, si tiene más de una valencia.

Ejemplos: Cu²⁺: Catión cobre(II) Na¹⁺: Catión sodio

4.3.2 <u>ANIONES</u>

Si procede de una sal binaria, se nombra con el nombre del no metal acabado en -uro.

Ejemplos: F^{1-} - fluoruro S^{2-} - sulfuro

Si procede de un oxoácido, se nombra sustituyendo la palabra ácido por la de anión y cambiando el sufijo —oso por —ito y el sufijo —ico por —ato.

Si el sufijo en el ácido era	El sufijo en el anión será
-OSO —	-ito
-ico	-ato

Regla nemotécnica. "Mientras el oso toca el pito, el chico le tira el zapato"

Ejemplos:

 $\mathrm{NO_2}^{1\text{-}}$ - Anión nitrito

SO₄² - Anión sulfato

ClO¹⁻ - Anión hipoclorito

4.4 SALES TERNARIAS (OXISALES)

GRUPO DE COMPUESTOS	Oxisales (sales ternarias)
TIPO DE COMBINACIÓN	Combinación de cationes, M^{m+} , con aniones procedente de un ácido ternario, $(X_aO_b)^{n-}$.
FÓRMULAS	(Catión) _n (anión) _m (n es el valor de la carga del anión y m el valor de la carga del catión).
NOMENCLATURA TRADICIONAL	Nombre del anión + de + nombre del catión+ valencia del catión, si hay más de una (en números romanos y entre paréntesis).
EJEMPLOS	Li ₂ CO ₃ -Carbonato de litio AuNO ₂ -Nitrito de oro(I)

4.5 COMPUESTOS CUATERNARIOS

4.5.1 SALES ÁCIDAS

GRUPO DE COMPUESTOS	Sales ácidas		
TIPO DE COMBINACIÓN	Provienen de la sustitución parcial de los iones hidrógeno de un ácido oxoácido por cationes.		
FÓRMULAS	$(Cati\acute{o}n)_n (Hidr\acute{o}geno)_m (ani\acute{o}n)_p$ n · (carga del cati\acute{o}n) + m = p · (carga del ani\acute{o}n)		
NOMENCLATURA TRADICIONAL	Prefijo referido al nº de hidrógenos + hidrógeno + nombre del anión + de + nombre del catión+ valencia del catión, si hay más de una (en números romanos y entre paréntesis).		
EJEMPLOS	KHCO ₃ -Hidrógenocarbonato de potasio Cu ₂ HPO ₄ -Hidrógenofosfato de cobre(I) Ba(H ₂ PO ₄) ₂ -Dihidrógenofosfato de bario		

4.5.2 SALES CON VARIOS CATIONES

GRUPO DE COMPUESTOS	Sales dobles, triples		
TIPO DE COMBINACIÓN	Se originan al sustituir los iones hidrógeno de un ácido por más de un catión.		
FÓRMULAS	En primer lugar, se escriben los cationes por orden alfabético.		
NOMENCLATURA TRADICIONAL	Anión + entre paréntesis la palabra doble, triple + de + nombre de los cationes en orden alfabético con prefijos numerales (di-, tri-,) antepuestos a los nombres de los cationes que tienen subíndices (2, 3,9 en la sal+ valencia del catión, si hay más de una (en números romanos y entre paréntesis).		
EJEMPLOS	CaNa ₂ (SO ₄) ₂ Sulfato (doble) de calcio y disodio MgNH ₄ AsO ₄ Arseniato (doble) de amonio y magnesio		

5. ESPECIES MONOATÓMICAS

Son moléculas formadas por un solo tipo de átomos: H_2 (dihidrógeno o hidrógeno molecular), N_2 (dinitrógeno o nitrógeno molecular), F_2 (diflúor o flúor molecular)...

Las moléculas de oxígeno tienen un tratamiento especial: O_2 (dioxígeno u oxígeno), O_3 (trioxígeno u ozono).

EJERCICIOS DE FORMULACIÓN Y NOMENCLATURA DE QUÍMICA INORGÁNICA

Bachillerato

1 COMPUESTOS BINARIOS

1.1 CON OXÍGENO

1.1.1 Y UN METAL (ÓXIDOS)

		in (OME 00)	
		NOMENCLATURA DE COMPOSICIÓN O ESTEQUIOMÉTRICA	
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos
1	ВаО	Óxido de bario	Óxido de bario
2	Na ₂ O	Óxido de disodio	Óxido de sodio
3	SnO	Monóxido de estaño	Óxido de estaño(II)
4	SnO ₂		
5		Monóxido de cobalto	
6			Óxido de cobre(II)
7	Cu ₂ O		
8		Óxido de dirrubidio	
9			Óxido de magnesio
10	PbO		
11		Óxido de dipotasio	
12			Óxido de oro(III)
13	Ni ₂ O ₃		
14		Monóxido de níquel	

1.1.2 Y UN METAL (PERÓXIDOS)

		NOMENCLATURA DE COMPOSICIÓN O ESTEQUIOMÉTRICA		
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos	
15	Li_2O_2	Dióxido de dilitio	Peróxido de litio	
16	Ag_2O_2	Dióxido de diplata	Peróxido de plata	
17	H_2O_2			
18		Dióxido de dicesio		
19			Peróxido de magnesio	
20	NiO_2			
21		Dióxido de dicobre		
22			Peróxido de cobre(II)	
23	ZnO_2			
24		Dióxido de cadmio		
25			Peróxido de sodio	
26	BaO ₂			
27		Dióxido de dimercurio		
28			Peróxido de mercurio(II)	

1.1.3 UN NO METAL (ÓXIDOS NO METÁLICOS Y HALUROS DE OXÍGENO*)

	FÓRMULA		NOMENCLATURA DE COMPOSICIÓN O ESTEQUIOMÉTRICA		
			Con prefijos multiplicadores	Expresando el número de oxidación con números romanos	
29	OCl_2	*	Dicloruro de oxígeno		
30	O_3Cl_2	*			
31	*		Dicloruro de pentaoxígeno		
32	O_7Cl_2	*			
33	SO				
34			Dióxido de azufre		
35				Óxido de azufre(VI)	
36	SeO				
37			Dióxido de carbono		
38				Óxido de carbono(II)	
39	SiO ₂				
40			Dióxido de teluro		
41				Óxido de nitrógeno(III)	
42	P_2O_5				

^{*}Por convenio de la Nomenclatura de la IUPAC 2005, los halógenos se consideran más electronegativos que el oxígeno, por tanto, las combinaciones binarias de un halógeno con el oxígeno se nombrarán como haluros de oxígeno (y no como óxidos) y el halógeno se escribirá a la derecha.

1.2 CON HIDRÓGENO

1.2.1 Y UN METAL (HIDRUROS METÁLICOS)

		NOMENCLATURA DE COMPOSICIÓN O ESTEQUIOMÉTRICA		
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos	
43	KH	Hidruro de potasio	Hidruro de potasio	
44	AlH_3	Trihidruro de aluminio	Hidruro de aluminio	
45	BeH_2			
46		Dihidruro de bario		
47			Hidruro de oro(I)	
48	LiH			
49		Monohidruro de cobre		
50			Hidruro de cobre(II)	
51	AuH ₃			
52		Dihidruro de cinc		
53			Hidruro de magnesio	
54	CoH_3			
55		Dihidruro de cobalto		
56			Hidruro de cadmio	

1.2.2 Y UN NO METAL (HALUROS DE HIDRÓGENO)

			DE COMPOSICIÓN O OMÉTRICA			
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos			
57	HF	Fluoruro de hidrógeno	Fluoruro de hidrógeno			
58	HC1	Cloruro de hidrógeno	Cloruro de hidrógeno			
59	HBr					
60		Yoduro de hidrógeno				
61	_		Sulfuro de hidrógeno			
62	H ₂ Se					
63	_	Telururo de dihidrógeno				

1.2.3 Y UN SEMIMETAL (HIDRUROS VOLÁTILES)

		NOMENCLATURA I	DE COMPOSICIÓN O		
			DMÉTRICA		
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación		
			con números romanos		
64	NH ₃	Trihidruro de nitrógeno	Hidruro de nitrógeno(III)		
65	PH_3	Trihidruro de fósforo	Hidruro de fósforo(III)		
66	AsH ₃				
67		Trihidruro de antimonio			
68			Hidruro de carbono(IV)		
69	SiH ₄				
70		Trihidruro de boro			

1.3 SALES

1.3.1 METAL Y NO METAL (SALES NEUTRAS)

		NOMENCLATURA DE COMPOSICIÓN O ESTEQUIOMÉTRICA						
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos					
71	LiF	Fluoruro de litio	Fluoruro de litio					
72	CaF_2	Difluoruro de calcio	Fluoruro de calcio					
73	AlCl ₃							
74		Trisulfuro de dihierro						
75			Sulfuro de níquel(II)					
76	СаТе							
77		Yoduro de potasio						
78			Bromuro de plomo(IV)					
79	SnSe							
80		Dibromuro de cobre						
81	· · · · · · · · · · · · · · · · · · ·		Bromuro de cobre(I)					
82	Hg ₃ As							
83		Monofosfuro de oro						
84			Sulfuro de cobalto(III)					

1.3.2 NO METAL Y NO METAL (SALES VOLÁTILES)

			DE COMPOSICIÓN O
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos
85	BrF ₃	Trifluoruro de bromo	Fluoruro de bromo(III)
86	BrCl	Monocloruro de bromo	Cloruro de bromo(I)
87	SeI ₂		
88		Tetracloruro de carbono	
89			Sulfuro de carbono(IV)
90	BrF_5		
91		Heptafluoruro de yodo	
92			Sulfuro de boro
93	As_2Se_3		
94		Fosfuro de boro	
95			Sulfuro de nitrógeno(III)
96	CS		
97		Hexafluoruro de azufre	
98			Bromuro de yodo(III)

2 COMPUESTOS TERNARIOS

2.1 HIDRÓXIDOS

			DE COMPOSICIÓN O OMÉTRICA
	FÓRMULA	Con prefijos multiplicadores	Expresando el número de oxidación con números romanos
99	$Hg(OH)_2$	Dihidróxido de mercurio	Hidróxido de mercurio(II)
100	КОН	Hidróxido de potasio	Hidróxido de potasio
101	$Ca(OH)_2$		
102		Dihidróxido de magnesio	
103			Hidróxido de plomo(IV)
104	Sn(OH) ₂		
105		Tetrahidróxido de estaño	
106			Hidróxido de plata
107	$Be(OH)_2$		
108		Monohidróxido de cobre	
109			Hidróxido de cinc
110	$Co(OH)_3$		
111		Monohidróxido de oro	
112	·		Hidróxido de níquel(II)

2.2 ÁCIDOS OXOÁCIDOS Y SUS ANIONES

2,2	TIGID 00 0	NOMENCI ATURA			NOMENICI ATUDA		
	FÓRMULA	NOMENCLATURA TRADICIONAL		FÓRMULA	NOMENCLATURA TRADICIONAL		
113	HClO	Ácido hipocloroso	150	ClO¹-	Anión hipoclorito		
114	HClO ₂	Ácido cloroso	151	ClO ₂ ¹⁻	Anión clorito		
115	HClO ₃	Ácido clórico	152	ClO ₃ ¹⁻	Anión clorato		
116		Ácido perclórico	153	ClO ₄ ¹⁻			
117	HBrO	•	154		Anión hipobromito		
118		Ácido bromoso	155	$\mathrm{BrO_2}^{1-}$	•		
119	HBrO ₃		156		Anión bromato		
120		Ácido perbrómico	157	BrO ₄ ¹⁻			
121	HIO	•	158		Anión hipoyodito		
122		Ácido yodoso	159	IO_2^{1-}			
123	HIO ₃		160		Anión yodato		
124		Ácido periódico	161	IO_4^{1-}			
125	H ₂ SO ₂		162	·	Anión hiposulfito		
126		Ácido sulfuroso	163	SO ₃ ²⁻			
127	H ₂ SO ₄		164	-	Anión sulfato		
128	- '	Ácido selenioso	165	SeO ₃ ² -			
129	H ₂ SeO ₄		166		Anión seleniato		
130		Ácido teluroso	167	TeO ₃ ²⁻			
131	H ₂ TeO ₄		168		Anión telurato		
132	2 1	Ácido nitroso	169	NO_2^{1-}			
133	HNO ₃		170	2,02	Anión nitrato		
134		Ácido metafosforoso	171	PO ₂ ¹⁻			
135	H ₃ PO ₃		172	2 0 2	Anión fosfito		
136	11,1 0 ,	Ácido metafosfórico	173	PO ₃ ¹⁻			
137	H ₃ PO ₄		174		Anión fosfato		
138	<u> </u>	Ácido arsenioso	175	AsO ₃ ³ -			
139	H ₃ AsO ₄		176	11000	Anión arseniato		
140	<u> </u>	Ácido antimonioso	177	SbO ₃ ³⁻			
141	H ₃ SbO ₄		178		Anión antimoniato		
142	J-1 1	Ácido carbónico	179	CO ₃ ² -			
143	H ₂ SiO ₃		180		Anión metasilicato		
144	2 3	Ácido silícico	181	SiO ₄ ⁴ -			
145	HBO ₂		182	2201	Anión metaborato		
146		Ácido bórico	183	BO ₃ ³⁻			
147	H ₂ CrO ₄		184		Anión cromato		
148	20-01	Ácido mangánico	185	$\mathrm{MnO_4}^{2\text{-}}$			
149	HMnO ₄		186	4	Anión permanganato		
150	_	Ácido difosfórico	192		Anión difosfato		
151	$H_4P_2O_5$	- 20 522023	193	$P_2O_5^{4-}$			
152	2~3	Ácido disulfuroso	194	- 203	Anión disulfurito		
153	H ₂ Se ₂ O ₇	TITTO GIOGILIATORO	195	$\mathrm{Se_2O_7}^{2-}$			
154	11200201	Ácido dicrómico	196	55201	Anión dicromato		
		1101do dictoffico	-70		1111011 dictolliato		

2.3 SALES NEUTRAS(OXISALES)

	FÓRMULA	NOMENCLATURA TRADICIONAL		FÓRMULA	NOMENCLATURA TRADICIONAL
197	Na_2SO_4	Sulfato de sodio	210		Selenito de níquel(III)
198	Al(ClO ₃) ₃	Clorato de aluminio	211	NiSeO ₄	
199	CaSO ₄	Sulfato de calcio	212		Telurito de oro(III)
200		Nitrato de plata	213	Au ₂ TeO ₄	
201	Na ₃ PO ₄		214		Nitrito de estroncio
202		Sulfato de hierro(II)	215	$Be(PO_2)_2$	
203	Ca(ClO) ₂		216		Fosfato de mercurio(I)
204		Carbonato de calcio	217	Hg ₃ (AsO ₃) ₂	
205	KClO ₄		218		Silicato de platino(II)
206		Bromito de litio	219	PbCrO ₄	
207	Pb(NO ₃) ₂		220		Permanganato de plomo(IV)
208		Fosfito de hierro(III)	221	FeSO ₃	
209	Li ₂ SiO ₃		222		Cromato de calcio

3 COMPUESTOS CUATERNARIOS

3.1 SALES ÁCIDAS

	FÓRMUL A	NOMENCLATURA TRADICIONAL		FÓRMULA	NOMENCLATURA TRADICIONAL
223	NaHCO ₃	Hidrogenocarbonato de sodio	227	Mg(HCO ₃) ₂	Hidrogenocarbonato de magnesio
224		Hidrogenocarbonato de aluminio	228	KHSO ₄	
225	Ca(HSO ₄) ₂		229		Dihidrogenofosfato de plata
226		Dihidrogenofosfato de cobre(II)	230	$Sn(H_2PO_4)_4$	

3.2 SALES CON VARIOS CATIONES

	FÓRMULA	NOMENCLATURA TRADICIONAL		FÓRMULA	NOMENCLATURA TRADICIONAL
231	FeNH ₄ (SO ₄) ₂	Sulfato (doble) de amonio e hierro(III)	233	AgHg(ClO ₃) ₃	Clorato (doble) de mercurio(II) y plata
232		Seleniato (doble) de cinc y cobre(II)	234	BeCa(CO ₃) ₂	

APUNTES DE FORMULACIÓN Y NOMENCLATURA DE QUÍMICA ORGÁNICA BACHILLERATO

I. Hidrocarburos	II. Funciones oxigenadas	III. Funciones nitrogenadas
1.1 Alcanos acíclicos lineales	1. Alcoholes	1. Aminas
1.2 Alcanos acíclicos ramificados	2. Éteres	2. Amidas
1.3 Alcanos cíclicos	3. Aldehídos	3. Nitrilos
2. Alquenos	4. Cetonas	4. Nitroderivados
3. Alquinos	5. Sales ácidas	
4. Derivados halogenados	6. Ácidos carboxílicos	
5. Hidrocarburos aromáticos	7. Ésteres	

FORMULACIÓN Y NOMENCLATURA DE QUÍMICA ORGÁNICA

En Química Orgánica a cada compuesto se le solía dar un nombre que generalmente hacía referencia a su procedencia como, por ejemplo, geraniol (presente en los geranios), ácido fórmico (presente en las hormigas), ácido láctico (presente en la leche), etc. Sin embargo debido al enorme número de compuestos del carbono, se vio la necesidad de nombrarlos de una forma sistemática. La Unión Internacional de Química Pura y Aplicada (IUPAC) desarrolló un sistema de formulación y nomenclatura que es el que vamos a seguir en las siguientes páginas. Hemos seguido las recomendaciones de Nomenclatura de Química orgánica de la IUPAC de 1993. Dichas recomendaciones modifican las anteriores de 1979. Los cambios propuestos están relacionados con la nomenclatura de algunos compuestos y consisten básicamente en colocar los numerales que indican la posición del doble o triple enlace o del grupo funcional inmediatamente delante de la terminación del nombre.

Nos puede servir de ayuda, en la modificación de la nomenclatura del año 1993, tener en cuenta que al quitar los numerales leemos correctamente el nombre de la sustancia sin indicadores de posición.

Ejemplos:

Fórmula	Nomenclatura de 1979	Nomenclatura de 1993
Formula	(sistema no válido)	(sistema utilizado en Selectividad)
CH ₃ -CH ₂ -CH=CH ₂	1-Buteno	But-1-eno
CH ₃ -CH(CH ₃)-CH=CH ₂	3-Metil-1-buteno	3-Metilbut-1-eno
CH ₂ =CH-CH=CH ₂	1,3-Butadieno	Buta-1,3-dieno
CH ₂ =CH-CH ₂ -CH ₂ OH	3-Buten-1-ol	But-3-en-1-ol
CH ₃ -CH ₂ -CH ₂ -CH ₂ OH	1-Butanol	Butan-1-ol
CH ₃ -CH ₂ -CHOH-CH ₂ OH	1,2-Butanodiol	Butano-1,2-diol
CH ₃ -CH ₂ -CH(NH ₂)-CH ₃	2-Butanamina	Butan-2-amina

En los ejemplos de nomenclatura, cuando es procedente, hemos nombrado a las sustancias de las dos formas, colocando entre paréntesis las recomendadas por la nomenclatura de 1993.

Las sustancias orgánicas se clasifican en bloques que se caracterizan por tener un átomo o grupo atómico definido (**grupo funcional**) que le confiere a la molécula sus

propiedades características. Al conjunto de sustancias que tienen el mismo grupo funcional se le llama **función química**. Una **serie homóloga** es el conjunto de compuestos orgánicos que tienen el mismo grupo funcional.

Las funciones orgánicas se clasifican de la siguiente manera:

- Funciones hidrogenadas. Sólo existen en la molécula átomos de carbono e hidrógeno. Son los hidrocarburos, que pueden ser de cadena cerrada o abierta. A su vez pueden ser saturados (enlaces simples), o insaturados (enlaces dobles o triples).
- Funciones oxigenadas. En la molécula existen átomos de carbono, oxígeno e hidrógeno. Son alcoholes, aldehídos, cetonas, ácidos, éteres y ésteres.
- Funciones nitrogenadas. Las moléculas están constituidas por átomos de carbono, nitrógeno e hidrógeno y a veces de oxígeno. Son amidas, aminas y nitrilos.

A veces sucede que en un mismo compuesto participan a la vez varias funciones por lo que se les denominan **sustancias polifuncionales.** En estos casos hay que tener en cuenta el siguiente orden de preferencia de los grupos funcionales:

Ácidos > ésteres > amidas = sales > nitrilos > aldehídos > cetonas > alcoholes > aminas > >éteres > > insaturaciones dobles > > insaturaciones triples > derivados halogenados > >derivados nitrogenados > hidrocarburos saturados (radicales)

La IUPAC ha establecido las siguientes reglas generales para la nomenclatura y formulación de compuestos orgánicos:

- La cadena principal es la más larga que contiene al grupo funcional más importante.
- El número de carbonos de la cadena se indica con los siguientes prefijos:

Nº de carbonos	1	2	3	4	5	6	7	8	9	10
Prefijo	Met-	Et-	Prop-	But-	Pent-	Hex-	Hept-	Oct-	Non-	Dec-

- El sentido de la numeración será aquél que otorgue el **localizador más bajo** a dicho grupo funcional.
- Las cadenas laterales se nombran antes que la cadena principal, precedidas de su correspondiente número de localizador separado de un guión y con la terminación "il" o "ilo" para indicar que son radicales. Varias cadenas laterales idénticas se nombran con prefijos di-, tri-, tetra-, etc.
- Se indicarán los sustituyentes por orden alfabético, a continuación el prefijo indicativo del número de carbonos que contiene la cadena principal y por último, la terminación (sufijo) característica del grupo funcional más importante.
- Cuando haya más de un grupo funcional, el sufijo de la cadena principal es el correspondiente al del grupo funcional principal, que se elige atendiendo al orden de preferencia mencionado anteriormente.

Empezaremos por describir la nomenclatura y formulación de las cadenas hidrocarbonadas, ya que el resto de los compuestos pueden considerarse derivados de los hidrocarburos, por sustitución de uno o más átomos de hidrógeno por átomos diferentes, que son los que aportan al compuesto determinada reactividad y que constituyen los grupos funcionales propiamente dichos.

I. FUNCIONES HIDROGENADAS: HIDROCARBUROS.

Los hidrocarburos son compuestos formados exclusivamente por átomos de carbono e hidrógeno que se clasifican de la siguiente manera:

1. ALCANOS

1.1 Alcanos Acíclicos Lineales

Son hidrocarburos saturados de cadena abierta. Se **nombran** con **un prefijo** que indica el número de átomos de carbono y el sufijo **-ano.** Se **representan** dibujando la cadena hidrocarbonada en la que cada átomo de carbono se une al siguiente con enlaces sencillos y se completa con los átomos de hidrógeno correspondientes a la tetravalencia propia del átomo de carbono.

Ejemplos:

n	Nombre	Fórmula molecular	Fórmula semidesarrollada
4	Butano	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃
5	Pentano	C ₅ H ₁₂	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃
6	Hexano	C ₆ H ₁₄	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃

1.2 Alcanos Acíclicos Ramificados

Son iguales que los anteriores pero con sustituyentes que constituyen las ramificaciones. El nombre del hidrocarburo se forma con los **nombres de los sustituyentes por orden alfabético**, **añadiendo al final**, **sin separación**, **el nombre de la cadena principal**. Varias cadenas laterales idénticas se nombran con prefijos **di-, tri-, tetra-, etc**. Para ello se siguen las reglas de la IUPAC:

- Localizar la cadena principal: la que tenga mayor longitud. A igual longitud, la que tenga mayor número de sustituyentes.
- b) Numerar la cadena principal. Utilizar la numeración que asigne los números más bajos a los sustituyentes. A iguales combinaciones, se escoge la menor numeración por orden alfabético de sustituyentes.
- c) Nombrar las cadenas laterales como **grupos alquilo precedidos por su localizador** separado por un guión.

La representación de estos compuestos a partir de su nombre sistemático se hace dibujando la cadena principal, numerándola e identificando los sustituyentes con sus respectivos localizadores.

Ejemplos:

Nombre	Fórmula
2,2-dimetilhexano	CH ₃ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃
3-etil-2-metilhexano	CH ₃ CH(CH ₃)CH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃

1.3 Alcanos Cíclicos

Son hidrocarburos saturados de cadena cerrada. Se nombran igual que los de cadena abierta pero anteponiendo el prefijo ciclo. Se representan de la misma manera que los de cadena abierta y se pueden omitir los símbolos de C e H que se suponen localizados en los vértices de la figura.

Nombre	Fórmula
Ciclopentano	
Metilciclohexano	CH ₃

2. ALQUENOS

Se llaman **alquenos** a los hidrocarburos que tienen uno o más dobles enlaces. Se **nombran** igual que los alcanos pero terminan en **-eno**, y se indica la posición del doble enlace con el localizador más bajo posible. Se **representan** dibujando la cadena hidrocarbonada señalando el o los dobles enlaces y se completa con los átomos de hidrógeno correspondientes a la tetravalencia propia del átomo de carbono. Si hay ramificaciones, se toma como cadena principal la más larga de las que contienen al doble enlace y se comienza a numerar por el extremo más próximo al doble enlace. Cuando existe más de un doble enlace, la terminación es **-dieno**, **-trieno**, etc.

Ejemplos:

Nombre	Fórmula
pent-2-eno	CH ₃ CH ₂ CH=CHCH ₃
hexa-2,4-dieno	CH ₃ CH=CHCH=CHCH ₃
2-metilhex-1-eno	CH ₂ =C(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃

3. ALQUINOS

Se llaman **alquinos** a los hidrocarburos que tienen uno o más triples enlaces. Se **nombran** igual que los alcanos pero terminan en **-ino**, y se indica la posición del triple enlace con el localizador más bajo posible. Se **representan** dibujando la cadena hidrocarbonada señalando el o los triples enlaces y se completa con los átomos de hidrógeno correspondientes a la tetravalencia propia del átomo de carbono. Si hay ramificaciones y/o más de un triple enlace, la nomenclatura es análoga a la de los alquenos. La cadena se nombra de forma que los localizadores de las insaturaciones sean lo más bajos posible. Cuando hay dobles y triples enlaces en la cadena, la terminación del compuesto debe corresponder a la del triple enlace, es decir, **ino**.

Ejemplos:

Nombre	Fórmula
pent-2-ino	CH ₃ CH ₂ C≡CCH ₃
hexa-2,4-diíno	CH ₃ C≡CC≡CCH ₃
6-metilhepta-1,4-diíno	CH=CCH ₂ C=CCH(CH ₃)CH ₃

4. DERIVADOS HALOGENADOS

Se trata de compuestos hidrocarbonados en los que se sustituye uno o varios átomos de hidrógeno por uno o varios átomos de halógenos X. Se **nombran y representan** igual que el hidrocarburo del que procede indicando previamente el lugar y nombre del halógeno como si fuera un sustituyente alquílico.

Nombre	Fórmula
2,2-diclorohexano	CH ₃ C(CI) ₂ CH ₂ CH ₂ CH ₂ CH ₃
1-Bromopent-2-ino	CH ₃ CH ₂ C≡CC(Br)H ₂

5. HIDROCARBUROS AROMÁTICOS.

Se trata, fundamentalmente, de derivados del benceno mono y polisustituídos.

Para bencenos monosustituídos, el localizador n^0 1 se asigna al carbono con el sustituyente. Para bencenos polisustituídos, se siguen las mismas normas que para los cicloalcanos. Los sustituyentes en posiciones 1,2-, 1,3-, 1,4-, pueden nombrarse con los prefijos o- (orto), m- (meta) y p- (para). Cuando el anillo bencénico es un sustituyente se le denomina **fenil**.

Ejemplos:

Nombre	Fórmula
Metilbenceno (Tolueno)	\leftarrow CH ₃
1,2-Dimetilbenceno (o- Dimetilbenceno)	CH ₃
1,3-Etilmetilbenceno (m-Etilmetilbenceno)	CH ₂ CH ₃

II. FUNCIONES OXIGENADAS

Las funciones oxigenadas son las que contienen, además de átomos de carbono y de hidrógeno, átomos de oxígeno. Se clasifican en:

1. ALCOHOLES (R - OH)

Un alcohol es un compuesto que contiene uno o más grupos hidroxilos (-OH) enlazados a un radical carbonado R. Los alcoholes que contienen sólo un grupo –OH se nombran añadiendo la terminación –ol al nombre del hidrocarburo correspondiente del cual deriva. Para ello el primer paso es elegir como cadena principal la cadena más larga que contiene al grupo –OH, de forma que se le asigne el localizador más bajo posible. Si hay más de un grupo –OH se utilizan los términos –diol, -triol, etc, según el número de grupos hidroxilo presentes, eligiéndose como cadena principal, la cadena más larga que contenga el mayor número de grupos –OH, de forma que se le asignen los localizadores más bajos.

Cuando el grupo **–OH** se encuentra unido a un anillo aromático (benceno) el compuesto recibe el nombre de **fenol**. Cuando el grupo **–OH** va como sustituyente se utiliza el prefijo **hidroxi-**.

Nombre	Fórmula
Hexan-2-ol	CH₃CHOHCH₂CH₂CH₂CH₃
4-Metilpentan-2-ol	CH ₃ CHOHCH ₂ CH(CH ₃)CH ₃
3-Etilhexano-1,4-diol	CH ₂ OHCH ₂ CH(CH ₂ CH ₃)CHOHCH ₂ CH ₃
Pent-3-en-1-ol	CH ₂ OHCH ₂ CH≔CHCH ₃
Pentano-2,4-diol	CH₃CHOHCH₂CHOHCH₃

Fenol (Hidroxibenceno)	ОН
m-Metilfenol (1,3-Metilfenol)	OH CH ₃

2. ÉTERES (R – O – R´)

Podemos considerar los éteres como derivados de los alcoholes en los que el hidrógeno del grupo **–OH** es reemplazado por un radical **R**´. Para nombrar los éteres se nombra la cadena más sencilla unida al oxígeno (**RO-)** terminada en **–oxi** (grupo **alcoxi**) seguido del nombre del hidrocarburo que corresponde al otro grupo sustituyente. También se pueden nombrar indicando los nombres de los radicales **R** y **R**´ seguidos de la palabra **éter**.

Ejemplos:

Nombre	Fórmula
Metoxietano (Etil metil éter)	CH ₃ OCH ₂ CH ₃
Dietiléter (Etoxietano)	CH ₃ CH ₂ OCH ₂ CH ₃
Etil fenil éter (Etoxibenceno)	CH ₃ CH ₂ O

3. ALDEHÍDOS (R -CHO)

En los aldehídos, el grupo carbonilo (C=O) se encuentra unido a un radical R y a un hidrógeno. El grupo **-CHO** es un grupo terminal, es decir, siempre se encontrará en un extremo de la cadena y por lo tanto se le asigna el número localizador más bajo. Para nombrar un aldehído se elige como cadena principal la cadena más larga que contenga al grupo **-CHO**. Si se encuentra alguna instauración (doble o triple enlace) se elegirá como cadena principal la que contenga al grupo **-CHO** y la citada instauración. El nombre del compuesto se obtiene añadiendo al nombre del compuesto que constituye la estructura principal la terminación **-al**.

Si existen dos grupos **–CHO** se elegirá como cadena principal la que contiene a dichos grupos y se nombran de igual manera que en el caso anterior finalizando con el sufijo **–dial** y si además hay presentes instauraciones se les debe asignar los localizadores más bajos. Cuando el grupo **–CHO**, siendo el grupo principal, se encuentra unido a un sistema cíclico el nombre se formará indicando el sistema cíclico seguido de la terminación **–carbaldehído.**

Cuando el grupo -CHO no es grupo principal entonces se nombra con el prefijo - formil.

Nombre	Fórmula
2-Metilpentanal	CH ₃ CH ₂ CH ₂ CH(CH ₃)CHO
4-Hidroxipentanal	CH₃CHOHCH₂CH₂CHO
Hex-4-enal	$CH_3CH = CHCH_2CH_2CHO$

4. CETONAS (R - CO - R')

En las cetonas el grupo principal es también el grupo carbonilo (C=O), pero a diferencia de los aldehídos no es un grupo terminal por lo que para nombrar estos compuestos se elige la cadena más larga que contenga a dicho grupo y se le asignará el localizador más bajo posible. El nombre del compuesto se obtiene añadiendo la terminación **–ona** al nombre del compuesto que constituye la estructura principal.

Cuando el grupo carbonilo se encuentra como grupo sustituyente en una cadena y no es el grupo principal, entonces se nombra con el prefijo **–oxo**.

Ejemplos:

Nombre	Fórmula
Hexan-2-ona	CH₃COCH₂CH₂CH₂CH₃
Pentano-2,4-diona	CH₃COCH₂COCH₃
Butanona	CH₃COCH₂CH₃
Hept-3-ino-2,6-diona	$CH_3COCH_2C \equiv CCOCH_3$
2-Oxopentanal	CH₃CH₂CH2COCHO

5. ÁCIDOS CARBOXÍLICOS (R - COOH)

Para **nombrar** los ácidos carboxílicos se elige como cadena principal la cadena hidrocarbonada más larga que contenga al grupo principal el cual recibirá el localizador más bajo (el grupo carboxilo se encuentra siempre en una posición terminal). Se antepone la palabra **ácido** seguido de los sustituyentes con sus localizadores por orden alfabético, nombre de la cadena carbonada y terminación en **–oico**. Si hay alguna instauración (doble o triple enlace) la cadena principal sería la que contiene el grupo –COOH y la instauración.

Ejemplos:

Nombre	Fórmula
Ácido propanoico	CH₃CH₂COOH
Ácido-4-metilpentanoico	CH ₃ CH(CH ₃)CH ₂ CH ₂ COOH
Ácido-3-hidroxibutanoico	СН₃СНОНСН₂СООН
Ácido-6-metilhept-3-enoico	CH₃CH(CH₃)CH₂CH=CHCH₂COOH
Ácido hex-3-enodioico	COOHCH2CH=CHCH2COOH
Ácido-3-oxopentanodioico	COOHCH ₂ COCH ₂ COOH

6. ÉSTERES (R - COO - R')

Los ésteres se pueden nombrar a partir del ácido del cual derivan, eliminando la palabra ácido, cambiando la terminación **–oico** por **–oato** y seguida del nombre del radical que sustituye al H del grupo –OH del ácido.

Cuando este grupo no es el principal se utiliza el prefijo oxicarbonil-.

Ejemplos:

Nombre	Fórmula	
Etanoato de propilo (Acetato de propilo)	CH ₃ COOCH ₂ CH ₂ CH ₃	
Butanoato de etilo	CH ₃ CH ₂ CH ₂ COOCH ₂ CH ₃	
Propanoato de etenilo	CH₃CH₂COOCH=CH₂	
5-Oxohexanoato de metilo	CH ₃ COCH ₂ CH ₂ CH ₂ COOCH ₃	
2,3-Dicloropropanoato de fenilo	CH2CICH-CICOO—	

7. SALES (R - COOM)

Las sales orgánicas se nombran como el ácido del cual derivan, eliminando la palabra ácido, cambiando la terminación **–oico** por **–oato** y seguida del nombre del metal que sustituye al H del grupo –OH del ácido.

Ejemplos:

Nombre	Fórmula
Etanoato de sodio (Acetato de sodio)	CH₃COONa
Benzoato de potasio	СООК
But-2-enoato de calcio	(CH ₃ CH=CHCOO) ₂ Ca

III. FUNCIONES NITROGENADAS

Las funciones nitrogenadas son las que contienen, además de átomos de carbono y de hidrógeno, átomos de nitrógeno, aunque también pueden contener átomos de oxígeno. Se clasifican en:

1. AMINAS $(R - NH_2)$

Las aminas pueden ser primarias, secundarias y terciarias según presenten uno, dos o tres radicales R unidos al átomo de nitrógeno. Para nombrar las aminas primarias (R – NH₂) se puede proceder de dos formas. Una consiste en considerar el grupo R como un alcano al cual se le añade la terminación – amina. En este caso hay que buscar para el grupo –NH₂ el localizador más bajo posible. La segunda forma consiste en considerar el grupo –NH₂ como la estructura fundamental y se nombra el grupo R como un radical al que se le añade el sufijo –amina.

Para nombrar las aminas secundarias ($R_1 - NH - R_2$) y terciarias ($R_1 - NR_2R_3$) se toma como estructura principal aquella que contenga un radical R con mayor prioridad de acuerdo con los criterios de selección de cadena principal ya vistos y para indicar que los otros radicales se unen al nitrógeno se utiliza la letra N seguido del nombre del radical correspondiente.

También se pueden nombrar las aminas secundarias y terciarias indicando los nombres de todos los radicales sustituyentes seguidos del sufijo **–amina**. Cuando el grupo **–NH**₂ va como sustituyente se utiliza el prefijo **amino**-.

Ejemplos:

Nombre	Fórmula
Pentan-2-amina	CH ₃ CH(NH ₂)CH ₂ CH ₂ CH ₃
Heptano-2,5-diamina	CH ₃ CH ₂ CH(NH ₂)CH ₂ CH ₂ CH(NH ₂)CH ₃
5-Metilhexano-2,4-diamina	CH ₃ CH(NH ₂)CH ₂ CH(NH ₂)CH(CH ₃)CH ₃
Dietilamina	(CH ₃ CH ₂) ₂ NH
<i>p</i> -Aminofenol	HO—NH ₂

2. AMIDAS (R- CO - NH₂)

Las amidas primarias se nombran a partir del ácido correspondiente eliminando la palabra ácido y cambiando la terminación **–oico** por **–amida**. Se trata de un grupo terminal. Si el grupo **-CONH**² se encuentra unido a un anillo, siendo grupo principal, entonces se nombra como **–carboxamida**.

Si las amidas son secundarias (R - CO - NH - R) o terciarias (R - CO - NRR) los sustituyentes que reemplazan a los hidrógenos se localizan empleando las letras N. Cuando existen otros grupos funcionales de mayor prioridad se nombra con el prefijo carbamoil-.

Eiemplos:

Nombre	Fórmula
Etanamida (Acetamida)	CH ₃ CONH ₂
N-Metilpentanamida	CH ₃ CH ₂ CH ₂ CCONH(CH ₃)
N,N-Dietilpropanamida	CH ₃ CH ₂ CON(CH ₂ CH ₃) ₂
N,N-Diformilpropanamida	CH ₃ CH ₂ CON(CHO) ₂
4-Metilciclohex-3-enocarboxamida	H ₃ C—CONH ₂
Ácido 3-carbamoilpentanoico	CH ₃ CH ₂ CH(CONH ₂)CH ₂ COOH

3. NITRILOS (R - C≡N)

El grupo **–CN** es terminal, por lo que debe ir en el extremo de la cadena. Para nombrar los nitrilos se añade el sufijo **–nitrilo** al nombre del hidrocarburo correspondiente a la cadena carbonada. En el caso de que haya más de un grupo **–CN** o bien se encuentre unido a un anillo, se suele emplear el sufijo **–carbonitrilo**.

Cuando existen otros grupos funcionales de mayor prioridad el grupo **–CN** se nombran con el prefijo **ciano-**.

Eiemplos:

Nombre	Fórmula	
Propanonitrilo (Cianuro de etilo)	CH ₃ CH ₂ CN	
Butanodinitrilo	CNCH ₂ CH ₂ CN	

Hex-4-enonitrilo	CNCH ₂ CH ₂ CH=CHCH ₃	
Heptano-2,4,6-tricarbonitrilo	CH ₃ CH(CN)CH ₂ CH(CN)CH ₂ CH(CN)CH ₃	
p-Cianobenzoato de etilo	CN—COOCH ₂ CH ₃	

4. NITRODERIVADOS (R - NO2)

Para nombrar los nitroderivados se añade el prefijo nitro- al nombre del hidrocarburo correspondiente a la cadena carbonada.

Eiemplos:

Nombre	Fórmula
Nitrometano	CH ₃ NO ₂
3-nitro-prop-1-eno	$CH_2 = CH - CH_2 - NO_2$
p-cloronitrobenceno	CI—NO ₂
2,4,6-trinitrotolueno	NO_2 CH_3 NO_2

CUADRO RESUMEN DE FORMULACIÓN Y NOMENCLATURA ORGÁNICA

Los compuestos orgánicos se nombran y formulan con las siguientes reglas de la IUPAC:

- La cadena principal es la más larga que contiene al grupo funcional más importante.
- El sentido de la numeración será aquél que otorgue el **localizador más bajo** a dicho grupo funcional.
- Las cadenas laterales se nombran antes que la cadena principal, precedidas de su correspondiente número de localizador y con la terminación "il" o "ilo" para indicar que son radicales.
- Se indicará los sustituyentes por **orden alfabético**, incluyendo la terminación característica del **grupo funcional más** importante a continuación del prefijo indicativo del número de carbonos que contiene la cadena principal.
- Cuando haya más de un grupo funcional, el sufijo de la cadena principal es el correspondiente al del grupo funcional principal, que se elige atendiendo al siguiente orden de preferencia:

Ácidos > ésteres > amidas = sales > nitrilos > aldehídos > cetonas > alcoholes > aminas > éteres > > insaturaciones dobles > > insaturaciones triples > derivados halogenados > derivados nitrogenados > hidrocarburos saturados (radicales)

Los hidrocarburos son compuestos formados exclusivamente por átomos de carbono e hidrógeno. Si son saturados (sólo enlaces sencillos) se denominan alcanos y si son insaturados se denominan alquenos (enlaces dobles) o alquinos (enlaces triples). Pueden ser de cadena abierta o cerrada, alifáticos o aromáticos.

	GRUPOS FUNCIONALES OXIGENADOS Y NITROGENADOS				
Orden	Función	Grupo	SUFIJO Grupo principal		PREFIJO
			Cadena principal	Cadena lateral	Grupo secundario
1º	Ácido	R-COOH	Ácido R-oico	-carboxílico	Carboxi-
2°	Éster	R-COOR'	R-oato de R´ilo	Carboxilato de R´	-oxicarbonil-
3°	Sales	R-COOM	R-oato de M	Carboxilato de M	
3°	Amida	R-CONH ₂	R-amida	Carboxamida	Carbamoil-
4°	Nitrilo	R-CN	R-nitrilo	Carbonitrilo	Ciano-
5°	Aldehído	R-CHO	R-al	Carbaldehído	Formil-
6°	Cetona	R-CO-R'	R-ona		Oxo-
7º	Alcohol	R-OH	R-ol		Hidroxi-
8º	Amina	R-NH ₂	R-amina		Amino-
9º	Éter	R-O-R´	RR´-éter (R-oxi-R´)		R-oxi

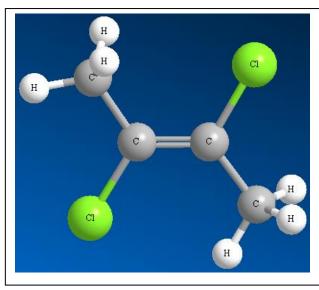
EJERCICIOS DE FORMULACIÓN Y NOMENCLATURA DE QUÍMICA ORGÁNICA (1)

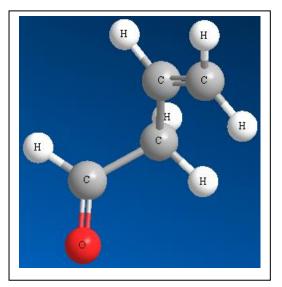
Nº	FÓRMULA	NOMBRE
1	CH ₃ CH(CH ₃)CH(CH ₃)CHCH(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃	
2		Buta-1,2,3-trieno
3	$CH \equiv CCH(CH_2CH_3)CH_2C \equiv CH$	
4		6-etil-6-metil-octa-1,4-diíno
5	$CH_2=CHCH(CH_3)CH_2C\equiv CH$	
6		4,5-dimetil-octa-3,6-dien-1-ino
7	CHCl ₃	
8		Pent-3-en-2-ol
9	HOCH ₂ CH=CHCH ₂ OH	
10		But-2-enal
11	CH ₃ CH ₂ C(CH ₃) ₂ CHO	
12		2-metil-pentan-3-ona
13	СН₃СН=СНСООН	
14		Ácido propanodioico
15	CH ₃ COCH ₂ CH ₂ COOH	
16		2-metil-propanoato de sodio
17	СН₃СНОНСНОНСООН	
18		2-cloro-butanoato de etilo
19	CH ₃ CH(CH ₃)CONH ₂	
20		N,N-dimetilmetanamida
21	CH ₃ CH ₂ CH(NH ₂)CH ₂ CH ₂ NH ₂	
22		2-nitrobutano

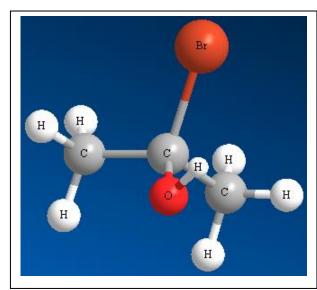
23	CH3CH(CH3)CH(CH3)CH(C	н./Сн.сп.сп сп	
23		<u> пзусп2сп2сп2сп2</u>	3
24			3-etil-hepta-1,5-dieno
25	CH ₃ CH=CHC(CH ₃)(CH ₂ CH ₂ CH	I3)CH=CHCH=CH	CH ₃
26			Ácido p-aminobenzoico
27	CH ₃ CH ₂ CCl ₂ CH(C	H ₂ CH ₃)CH ₃	
28			Ácido ciclohexilmetanoico
29	СН₂ОНСНОН	CH ₂ OH	
30			Etil-fenil-éter
31	CH ₂ =C(CH ₃)	СНО	
32			Difenil-éter
33	$CH_3CH_2C(CH_3)=$	СНСНО	
34			Ácido 2-metil-pent-3-enoico
35	(O)-NE	2	
36			Ácido 3-hidroxi-butanoico
37	CH ₃ CH ₂ CH ₂ COOC	H ₂ CH ₂ CH ₃	
38			Trimetilamina
39	H ₂ NCH ₂ CH ₂ CH ₂	CH ₂ NH ₂	
40			Benzamida
41	CH ₃ -(CH ₂) ₆ -C	ONH ₂	
42			1,2-dinitroetano

EJERCICIOS FORMULACIÓN Y NOMENCLATURA DE QUÍMICA ORGÁNICA BACHILLERATO (2)

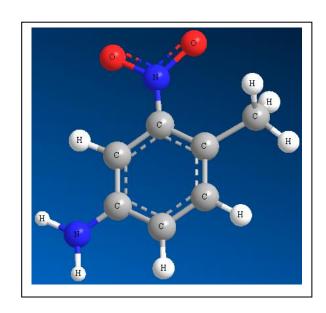
FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
CH ₃ -CH ₂ -CH-CHI-CH ₂ -CH ₃ CH=CH ₂		CHO-CH₂-C≡C-CH₂-CH₃	
	1-bromo-3-metil ciclohexano		4-yodo-2-pentanona
CH ₃ -CHOH-C=CH ₂ CH ₂ -CH ₃		CH ₃ -CH-CH=CH-CO-CH ₃ CH ₂ -CH ₃	
	2,4,4-tricloro-butano-1,3-diol		Ácido 2-metil-but-3-en-oico
CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃		CH₃-CH₂-CH-C≡C-COOH CH₃	
	4-cloro-2-metil-butanal		2-cloro-3-metil butanoato de etilo

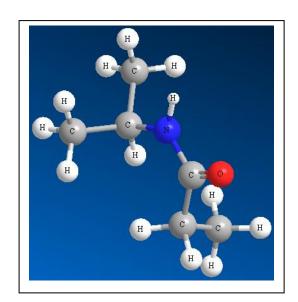

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
CH ₃ -COO-CH ₂ -CH ₂ -CH ₃		CH₂I-CH-CN CH₂-CH₃	
	Butil, metil amina		1,3-dinitrociclopentano
CH₃-CHCl-CONH₂		NO_2	
	N-butil metil propanamida		Paraclorofenol
H-CON₁I-CH₃ CH₂-CH₃		Br-CH ₃	
	2-cloro-but-3-eno-nitrilo		1-cloro-2-etil-4-nitrobencen

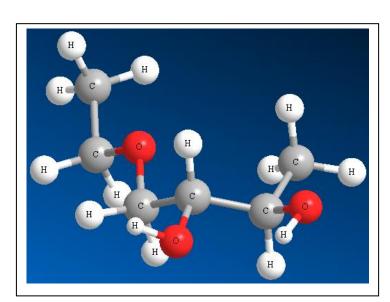

COMPUESTOS ORGÁNICOS 1				
Nombre	Fórmula	Nombre	Fórmula	
4-metilanilina			CH ₃ -C	
N-metilacetamida			CH ₃ −CH−CH−C≡CH	
3-etil-3,5,7-trimetilocta-1,5-dieno			CH ₃ —CH—CH ₃ OH	
2-etil-4-metilcicloheptanol			CH ₂ OH-CHOH-CHOH-CH ₃	
3-yodopentanal			OHC-CH ₂ -CHO	
2-metilhexα-1,5-dien-3-ino			O O	
3-metilbutan-2-ona			0 = C OH	
N-metiletilamina			CH₂OH−COO⁻⁺K	
3-metilpentano-2,4-diona			он-сн=с=сн-он	


COMPUESTOS ORGÁNICOS 2				
Nombre	Fórmula	Nombre	Fórmula	
Ácido 3-carboximetil-2-metilpent-2- enodioico			H ₃ C — C — CH ₂	
4-amino-5-metilheptan-2-ol			CHO-COO-+Ag	
2,3-dimetil-1-buteno			O CH ₃ -C-O-CH ₂ -CH ₃	
3-etil-2,3-dimetilpenta-1,4-dieno			N≡C−C≡N	
3-metilpentanodiona			CH ₃ CH ₃ —C—COOH CN	
3-etil-6,6-dimetilheptano-2,4-diol			CH3-CH2-COO	
2-etil-5-metilhex-4-enal			CH ₃ -CH-CH ₂ -COO-CH ₂ -CH CH ₃	
Ácido 3-oxopentanoico			CH ₃ I CH ₃ —N—CH ₃	

COMPUESTOS ORGÁNICOS 3				
Nombre	Fórmula	Nombre	Fórmula	
1,3,5-trimetilbenceno			CH₃ CH₂—C==CH—CH₃ OH	
	CH ₃ -CH ₂ -O-CH ₂ -CH ₃	3-hidroxibutanona		
etilciclopentano		Ácido 3-carboxihexanodioico		
	CH ₃ -CH-COO-CH ₃		CH ₂ =CH—CH—CN CH ₃	
estireno			NO ₂	
2-metilbutan-1-ol		N,N-dimetil-1-propanamina		
		4-cianopentanoato de sodio		
N-clorometilpropanamida			Br CH ₃ —CH—CH—CHO NO ₂	


4.1 4.2 4.3





4.4 4.5 4.6

